Rank change in Poisson dynamical systems

نویسندگان

  • Vivek Narayanan
  • Philip J. Morrison
چکیده

Abstract It is shown in this paper how a connection may be made between the symmetry generators of the Hamiltonian (or potential) invariant under a symmetry group G, and the subcasimirs that come about when the rank of the Poisson structure of a dynamical system drops by an even integer. This kinematics-dynamics connection is made by using the algebraic geometry of the orbit space in the vicinity of rank change, and the extra null eigenvectors of the mass matrix (Hessian with respect to symmetry generators) of the Hamiltonian (or potential). Some physical interpretations of this point of view include a control-theoretic prescription to study stability on various symplectic leaves of the Poisson structure. Methods of Invariant Theory are utilized to provide parametrization for the leaves of a Poisson dynamical system for the case where a compact Lie group acts properly on the phase space, which is assumed to be modeled by Poisson geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Drift Change Point Estimation in the rate and dependence Parameters of Autocorrelated Poisson Count Processes Using MLE Approach: An Application to IP Counts Data

Change point estimation in the area of statistical process control has received considerable attentions in the recent decades because it helps process engineer to identify and remove assignable causes as quickly as possible. On the other hand, improving in measurement systems and data storage, lead to taking observations very close to each other in time and as a result increasing autocorrelatio...

متن کامل

Bayesian change point estimation in Poisson-based control charts

Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...

متن کامل

Hamiltonian Approach to Poisson Lie T-Duality

The Hamiltonian formalism offers a natural framework for discussing the notion of Poisson Lie T-duality. This is because the duality is inherent in the Poisson structures alone and exists regardless of the choice of Hamiltonian. Thus one can pose alternative dynamical systems possessing nonabelian T-duality. As an example, we find a dual Hamiltonian formulation of the O(3) nonlinear σ-model. In...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013